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Abstract
Thermodynamical perturbation theory provides a method for calculating the
partition function or the free energy of a system from the properties of another
system. The first-order perturbation takes advantage of inequalities such as
the Gibbs–Bogoliubov inequality in classical mechanics and the Peierls and
Bogoliubov inequalities in quantum mechanics, which are used in variational
calculations. We present here sequences of inequalities which generalize
the former ones; they can be presented as rearrangements of perturbation
expansions, which provide exact bounds. As an example, the free energy of an
anharmonic oscillator is calculated with the first two variational principles.

PACS numbers: 05.90.+m, 05.30.−d, 05.20.−y

1. Introduction

Thermodynamical perturbation theory [1–4] provides the theoretical basis for the calculation
of the partition function or the free energy of a system from average values on the thermal
distribution of a known reference system. There is such a theory in classical statistical
mechanics, as well as in quantum mechanics.

The thermodynamical perturbation expansion is valid at high temperature. Using a limited
expansion outside this validity domain generally leads to wrong results. We show, however,
that the perturbation expansion limited to an odd order can be rearranged so as to provide an
exact bound, which makes the approximation usable in all cases.

The first-order perturbation result is an exact lower bound for the partition function (upper
bound for the free energy). That property is generally called the Gibbs–Bogoliubov inequality
in classical statistical mechanics, and the Bogoliubov inequality in quantum mechanics. Both
are grounded on the Jensen inequality (or convexity inequality) for the exponential function
(section 2). Demonstrating the Gibbs–Bogoliubov inequality is easy (section 3), but the
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quantum case (section 4) is more subtle: the original proof [5, 6] applies twice the Jensen
inequality, the intermediate step being the Peierls inequality [7].

The existence of an exact bound allows us to use the first-order result even if the
‘perturbation’ is not truly so, in the sense of a small quantity. Moreover, if the reference
system depends on a parameter, one can vary this parameter to get the tightest possible bound.
Inequalities are thus potentially variational principles for the partition function Z or the free
energy F, but we lacked a means to improve the approximation by going to a higher order.

We present here sequences of inequalities which generalize the former ones. A set of
Jensen-type bounds for the average of an exponential function is found first (section 5). They
yield generalized Gibbs–Bogoliubov inequalities in statistical mechanics (section 6) and, with
more difficulty, generalized Bogoliubov inequalities in quantum mechanics (section 7). The
expressions are equivalent to odd-order thermodynamical perturbation expansions when these
are valid, while always ensuring exact bounds. As an application, the free energy of an
anharmonic oscillator is calculated with the first two variational principles, in both quantum
and classical mechanics (section 8).

2. Jensen inequality

J L W V Jensen is famous from his inequality for convex functions [8]:

Assume a probability law with average 〈· · ·〉, and a continuous and convex function
f (�x) of several variables �x. The average of the function is larger than the function at
the average:

〈f (�x)〉 � f (〈�x〉). (1)

The probability law may be discrete:

〈f (�x)〉 ≡
∑

n

wnf (�xn) � f

(∑
n

wn�xn

)
,

with weights wn � 0,
∑

n wn = 1, or continuous:

〈f (�x)〉 ≡
∫

w(t)f [�x(t)] dt � f

[∫
w(t)�x(t) dt

]
,

or mixed. Many known inequalities are obtained as particular cases of the fundamental Jensen
inequality (1) with the convex functions f (x) = x2, exp(x) or, for x > 0, 1/x,−√

x,− ln(x),
etc.

3. Inequality for the statistical partition function

At thermodynamical equilibrium, the probability of a state depends mainly on its energy E,
with a factor exp(−βE) (β ≡ 1/T denotes the inverse of the temperature T ). In this context,
the most important Jensen inequality is of course

〈exp(x)〉 � exp(〈x〉). (2)

Let us take the example of a classical one-dimensional system whose partition function
is Z ≡ ∑

n exp[−βE(n)] (we assume a discrete probability for simplicity). If we know a
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reference system, whose partition function is Z0 ≡ ∑
n exp[−βE0(n)], with which we can

calculate averages 〈· · ·〉0:

〈X〉0 ≡ 1

Z0

∑
n

X(n) e−βE0(n),

then we can write the exact equation

Z = Z0
〈
e−β(E−E0)

〉
0, (3)

and obtain the exact bound

Z � Z0 e−β〈E−E0〉0 (4)

by using Jensen inequality (2). By definition, the Helmholtz free energy is F ≡ −T ln Z,
whence another writing of this inequality:

F � F0 + 〈E − E0〉0. (5)

The name ‘Gibbs–Bogoliubov inequality’ dates back to 1968 [9] and has gradually spread.
If the reference system depends on a parameter, one can vary this parameter to get the

tightest possible bound. Inequalities (4) or (5) are thus potentially variational principles for
the partition function Z or the free energy F of a classical system ([3], p 656; [4], p 153). Note
that V ≡ E − E0 does not have to be a perturbation, in the sense of a small quantity.

4. Quantum inequalities

We shall recall in some detail a particular proof of the Bogoliubov inequality, because our
proof of the higher-order inequalities will follow the same lines.

4.1. ter Haar, Peierls

Let us begin with a quantum inequality due to ter Haar ([10], p 316): if A is a Hermitian
operator, |ψ〉 is a normalized state and f (x) is a convex function, then

〈ψ |f (A)|ψ〉 � f (〈ψ |A|ψ〉). (6)

The function f (A) of the operator A is an operator defined on the eigenstates of A: if
A|k〉 = Ak|k〉, f (A)|k〉 = f (Ak)|k〉.

To prove the ter Haar inequality, |ψ〉 is projected on a complete orthonormal basis {|k〉}
of eigenstates of A (we assume a discrete spectrum for simplicity),

A|k〉 = Ak|k〉, 〈k|l〉 = δkl,
∑

k

|k〉〈k| = 1,

|ψ〉 =
∑

k

xk|k〉,
∑

k

|xk|2 = 1;

then

〈ψ |f (A)|ψ〉 =
∑

k

|xk|2f (Ak) � f

(∑
k

|xk|2Ak

)
= f (〈ψ |A|ψ〉),

where the central inequality is the Jensen inequality (1) for the probability law defined by the
weights |xk|2. Note that the ter Haar inequality (6) is an equality if |ψ〉 is an eigenstate of A.

As remarked by ter Haar ([10], p 316), his result easily yields the Peierls inequality
[7], that is, if {|i〉} is any complete orthonormal set of states, then the partition function Z
corresponding to the Hamiltonian H is bounded by

Z ≡ Tr e−βH ≡
∑

i

〈i| e−βH |i〉 �
∑

i

e−β〈i|H |i〉. (7)
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The Peierls inequality is a sum of ter Haar inequalities (6) with the exponential as convex
function. Note that the Peierls inequality (7) is an equality if {|i〉} is the set of eigenstates
of H.

4.2. Bogoliubov, Feynman

We can now prove the quantum Bogoliubov inequality, that is, if two systems have the
equilibrium partition functions

Z ≡ Tr e−βH , Z0 ≡ Tr e−βH0 ,

then

Z � Z0 e−β〈H−H0〉0 , (8)

where the average 〈X〉0 of an operator X is calculated by

〈X〉0 ≡ 1

Z0
Tr(X e−βH0).

As for the free energies F ≡ −T ln Z, the quantum Bogoliubov inequality is

F � F0 + 〈H − H0〉0. (9)

If the Hamiltonian H0 of the reference system depends on a parameter, one can use the
quantum inequalities (8), (9) as variational principles for the partition function Z or the free
energy F of a quantum system. Note that V ≡ H −H0 does not have to be a small perturbation.

The quantum inequality (8) or (9) is generally attributed to Bogoliubov ([11]; [5], note 1
p 130; [12], note 4; [6], note 13). The first available proof, due to Mühlschlegel [5], has
been published in English by Girardeau [6]. We reproduce it here. Let {|n〉} be a complete
orthonormal basis of eigenstates of H0 (the spectrum is assumed discrete for simplicity),

H0|n〉 = En
0 |n〉, 〈m|n〉 = δmn,

∑
n

|n〉〈n| = 1.

On this basis, the Peierls inequality (7) reads, for H = H0 + V ,

Z ≡ Tr e−βH =
∑

n

〈n|e−βH |n〉 �
∑

n

exp
[−β

(
En

0 + 〈n|V |n〉)].
Defining a probability law from the weights

wn = 1

Z0
e−βEn

0 , Z0 =
∑

n

e−βEn
0 .

The Peierls inequality is again written as

Z � Z0

∑
n

wn e−β〈n|V |n〉, (10)

and the Jensen inequality (2) yields∑
n

wn e−β〈n|V |n〉 � e−β
∑

n wn〈n|V |n〉 = e−β〈V 〉0 ,

and therefore

Z � Z0 e−β〈V 〉0 ,

i.e. the Bogoliubov inequality (8).
This proof is thus done in two steps, a quantum one which yields the Peierls inequality,

and a classical one which ends with Bogoliubov’s; each step uses the Jensen inequality (2)
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applied to the exponential function. The quantum Bogoliubov inequality (8) is weaker than
the Peierls inequality (7), (10), but it is often easier to calculate: if H0 is simple enough, one
can hope to get directly Z0 and 〈V 〉0, without having to do the summations over all states
as required by the Peierls inequality. If a summation must be done anyway, better stay with
the stronger Peierls inequality: the cost is to evaluate a sum of exponentials, compared to the
exponential of a sum.

Another proof is due to Feynman ([13], section 2.11), but we could not extend it to higher
orders. Other proofs may be found in reference books ([14], sections I.H.IV.2 and V.E.II.2).
Quantum inequalities (8), (9) and statistical inequalities (4), (5) are so similar that they are
often confused with each other; but the quantum inequality remains more delicate to prove
than its classical limit (when H and H0 commute), the latter being a direct consequence of the
Jensen inequality (2).

We are going to use the Jensen inequality to get a sequence of bounds for the average of
an exponential, which generalize (2). From them we shall obtain a sequence of bounds for
the partition function or the free energy which generalize the Gibbs–Bogoliubov bound (4),
(5) in statistical mechanics, and the Peierls (7) and Bogoliubov bounds (8), (9) in quantum
mechanics.

To be concise, we shall speak of ‘Jensen inequalities’, and ‘second Bogoliubov inequality’,
and so on.

5. Sequence of Jensen inequalities

We construct inequalities which generalize (2), by applying the fundamental Jensen inequality
(1) to the sequence of convex functions

fN(x) = ex − 1 − x − x2

2!
− · · · − x2N−1

(2N − 1)!
, N = 1, 2, . . . .

To show the convexity, calculate the derivatives of fN(x) in succession, until exp(x). Going
back the opposite way, it is seen that odd-order derivatives are monotonic increasing functions
which go through 0 at x = 0, while even-order derivatives are convex functions with a zero
minimum at x = 0.

Applied to this sequence of convex functions, the fundamental Jensen inequality (1) yields

〈ex〉 � e〈x〉 +
〈x2〉 − 〈x〉2

2!
+ · · · +

〈x2N−1〉 − 〈x〉2N−1

(2N − 1)!
.

One can as well replace x by x − 〈x〉 + α, α being an arbitrary constant, which gives

〈ex−〈x〉〉 � 1 + e−α

[ 〈(x − 〈x〉 + α)2〉 − α2

2!
+ · · · +

〈(x − 〈x〉 + α)2N−1〉 − α2N−1

(2N − 1)!

]
.

Variation of the right-hand side with respect to α gives an optimum bound for

〈(x − 〈x〉 + α)2N−1〉 − α2N−1 = 0.

This equation has only one real root α: its derivative with respect to α is indeed

(2N − 1)[〈(x − 〈x〉 + α)2N−2〉 − α2N−2],

which is positive, by application of the Jensen inequality (1) to the convex function
(x − 〈x〉 + α)2N−2.

We have thus obtained a sequence of lower bounds of 〈exp(x − 〈x〉)〉. Let us detail the
first ones. For N = 1,

〈ex−〈x〉〉 � 1 (11)

is the basic inequality (2).
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For N = 2 and any α,

〈ex−〈x〉〉 � 1 + e−α

(
m2

2
+

m3 + 3αm2

6

)
,

with the definitions

mk ≡ 〈(x − 〈x〉)k〉
of the centred moments of x (m0 = 1,m1 = 0). The best bound, obtained for α = −m3/3m2,
is

〈ex−〈x〉〉 � 1 +
m2

2
exp

(
m3

3m2

)
. (12)

This second bound (12) is always better than the first one (11). For an x distribution whose
asymmetry m3 is zero, the ratio between the two is 1 + m2/2, with m2 being the variance of x.
For a very asymmetrical distribution, the situation depends on the sign of the asymmetry m3:
if it is large and positive, the second bound is much stronger than the first; if the asymmetry
is large and negative, the two bounds are very close.

It will be useful to know that

F(x2, x3) ≡ x2

2
exp

(
x3

3x2

)
(13)

is a convex function of the variables x2 � 0 and x3. Calculating the second-order partial
derivatives indeed yields

3∑
j,k=2

Xj

∂2F

∂xj∂xk

Xk = (x3X2 + x2X3)
2

18x3
2

exp

(
x3

3x2

)
,

which is positive if x2 is.
The third inequality can be written in analytical form, but a rather complicated one

(appendix A). The general case is studied in appendix B.

6. Classical thermodynamical perturbations

Define V ≡ E − E0. Expanding the exponential in the exact classical equation (3) yields the
thermodynamical perturbation expansion ([2], section 32)

Z = Z0 e−β〈V 〉0

(
1 +

β2M2

2!
− β3M3

3!
+

β4M4

4!
+ · · ·

)
, (14)

where Mk are moments of the perturbation:

Mk ≡ 〈(V − 〈V 〉0)
k〉0.

For the Helmholtz free energy F ≡ −T ln Z, this gives Zwanzig’s thermodynamical
perturbation expansion [1]:

F = F0 + 〈V 〉0 − M2

2T
+

M3

6T 2
− M4 − 3M2

2

24T 3
+ · · · (15)

(14) and (15) are expansions in powers of the reduced perturbation V − 〈V 〉0; using a limited
expansion is generally restricted to small values of the perturbation. Since the moments Mk

depend in general on temperature, (14) and (15) are not expansions in powers of β ≡ 1/T ;
limited expansions have however been useful as high-temperature approximations, even if no
convergence could be formally proved ([3], pp 639–40; [4], pp 149–50).
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Applying the Jensen inequality (11) to equation (3) yields the Gibbs–Bogoliubov
inequality (4) or (5). The second Jensen inequality (12) gives

Z � Z0 e−β〈V 〉0

[
1 +

β2M2

2
exp

(
−β

3

M3

M2

)]
,

or

F � F0 + 〈V 〉0 − T ln

[
1 +

M2

2T 2
exp

(
− 1

3T

M3

M2

)]
. (16)

This ‘second Gibbs–Bogoliubov inequality’ is always stronger than the first one. The exact
bound it provides can be used as a variational principle for the partition function Z or the free
energy F of a classical system. For small perturbations, it is equivalent to the expansion (14) or
(15) up to third order (M3 term). If the asymmetry M3 is strictly positive, it is a regularization
of this perturbation expansion: as precise for a small perturbation or at high temperature,
and always finite elsewhere; except in exceptional cases, the exponential in (16) vanishes at
low temperature, and the two bounds are then very close. If in contrast, the asymmetry M3 is
negative, the second Gibbs–Bogoliubov inequality is stronger than the first at low temperature;
except in exceptional cases, the upper bound of F tends towards F0 + 〈V 〉0 + M3/3M2.

If higher-order moments Mk can be calculated, one can consider the third Jensen
inequality, etc (appendix B). The ‘Nth Gibbs–Bogoliubov inequality’ is thus

Z � Z0 e−β〈V 〉0 [1 + FN( �M ′′)], M ′′
k ≡ (−β)kMk,

with the function FN defined in (B.2), (B.3). This exact bound is equivalent for small
perturbations to the thermodynamical perturbation expansion (14) limited to order 2N − 1,
and the low temperature behaviour depends on the sign of M2N−1. One cannot a priori
exclude extreme cases where the odd-order moments do not have the same sign: the sequence
of inequalities is then non-monotonic at low temperature.

7. Quantum thermodynamical perturbations

If {|i〉} is an arbitrary complete orthonormal set of states, the partition function of a quantum
system can be written with the help of an expansion in powers of β ≡ 1/T :

Z ≡ Tr e−βH ≡
∑

i

〈i| e−βH |i〉 =
∑

i

e−β〈i|H |i〉〈i| e−β(H−〈i|H |i〉)|i〉

=
∑

i

e−β〈i|H |i〉
(

1 +
β2hi

2

2!
− β3hi

3

3!
+ · · ·

)
, (17)

where

hi
k ≡ 〈i|(H − 〈i|H |i〉)k|i〉.

Note that all the hi
k vanish if {|i〉} are the eigenstates of H. In a first step, we are going to obtain

a sequence of inequalities which generalize the Peierls inequality (7), and whose limited-order
expansions are equal to (17).

7.1. ter Haar, Peierls

Using the second Jensen inequality (12) instead of the first (2), the proof of the ter Haar
inequality (6) gives

〈ψ | eA|ψ〉 � e〈ψ |A|ψ〉
[

1 +
µ2

2
exp

(
1

3

µ3

µ2

)]
, µk ≡ 〈ψ |(A − 〈ψ |A|ψ〉)k|ψ〉.
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From this comes a ‘second Peierls inequality’, stronger than the first one (7): if {|i〉} is any
complete orthonormal set of states,

Z =
∑

i

e−β〈i|H |i〉〈i| e−β(H−〈i|H |i〉)|i〉 �
∑

i

e−β〈i|H |i〉
[

1 +
β2hi

2

2
exp

(
−β

3

hi
3

hi
2

)]
. (18)

Expanding the right-hand side in powers of β gives the same result as (17) up to third order.
Note that this second Peierls inequality is an equality if {|i〉} are the eigenstates of H.

Higher-order ter Haar and Peierls inequalities are treated in appendix C.

7.2. Perturbation expansions

Let H = H0 + V and {|n〉} be a complete orthonormal basis of eigenstates of H0; one can
write

Z ≡ Tr e−βH ≡
∑

n

〈n| e−βH |n〉

= e−β〈V 〉0
∑

n

e−βEn
0 〈n| exp

[−β
(
H − En

0 − 〈V 〉0
)]|n〉

Expanding the exponential within the matrix element 〈n| · · · |n〉 gives

Z = e−β〈V 〉0
∑

n

e−βEn
0

(
1 − βgn

1 +
β2gn

2

2!
− β3gn

3

3!
+ · · ·

)

= Z0 e−β〈V 〉0

(
1 +

β2v2

2!
− β3v3

3!
+ · · ·

)
, (19)

where

gn
k ≡ 〈n|(H0 − En

0 + V − 〈V 〉0
)k|n〉, vk ≡ 1

Z0

∑
n

e−βEn
0 gn

k . (20)

Equation (19) is clearly a quantum analogue of the classical thermodynamical perturbation
expansion (14). Note that, contrary to its classical limit, the quantum development is not an
expansion in powers of the perturbation V ; for example, each matrix element gn

k (20) includes
a V 2 term:

gn
k � 〈n|V (

H0 − En
0

)k−2
V |n〉.

Since the averages vk depend in general on temperature, it is not an expansion in powers of
β ≡ 1/T .

Another quantum perturbation expansion is most easily drawn from the analogy between
a partition function and an evolution operator in ‘imaginary time’. From the exact equation

e−β(H0+V ) = e−βH0 −
∫ β

0
dβ ′ e−(β−β ′)H0V e−β ′(H0+V ),

is deduced the expansion in powers of the perturbation V (for example [13], section 2.11):

Z = Z0 − β
∑

n

e−βEn
0 〈n|V |n〉 +

β2

2

∑
n

e−βEn
0 〈n|V |n〉2 + β

∑
n

e−βEn
0

∑
m�=n

|〈n|V |m〉|2
Em

0 − En
0

+ · · ·

whence ([2], equation (32.6)):

F = F0 + 〈V 〉0 − β

2Z0

∑
n

e−βEn
0 (〈n|V |n〉 − 〈V 〉0)

2 − 1

Z0

∑
n

e−βEn
0

∑
m�=n

|〈n|V |m〉|2
Em

0 − En
0

+ · · ·
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with the 1
/(

H0 − En
0

)
denominators which are so characteristic of conventional quantum

perturbations. Feynman’s proof of the quantum Bogoliubov inequality ([13], section 2.11) is
grounded on this perturbation expansion, but we could not extend it to higher orders.

Our generalization of the Bogoliubov inequality is related to the other thermodynamical
perturbation expansion (19), or

F = F0 + 〈V 〉0 − β

2Z0

∑
n

e−βEn
0 〈n|(V − 〈V 〉0)

2|n〉 + · · ·

which is already different past the first order.

7.3. Quantum Bogoliubov

We are now going to establish a sequence of inequalities which generalize the quantum
Bogoliubov inequality (8), and whose limited-order expansions are equal to (19).

On the basis of eigenstates of H0, the second Peierls inequality (18) reads

Z �
∑

n

exp
[−β

(
En

0 + 〈n|V |n〉)] [
1 +

β2hn
2

2
exp

(
−β

3

hn
3

hn
2

)]
,

where

hn
k ≡ 〈n|(H − 〈n|H |n〉)k|n〉.

Another form of this second Peierls inequality is

Z � e−β〈V 〉0
∑

n

e−βEn
0

[
e−β(〈n|V |n〉−〈V 〉0) +

β2h′n
2

2
exp

(
−β

3

h′n
3

h′n
2

)]
, (21)

where

h′n
k = 〈n|(H − 〈n|H |n〉 + 〈n|V |n〉 − 〈V 〉0)

k|n〉 − (〈n|V |n〉 − 〈V 〉0)
k.

The two writings are equivalent, since

h′n
2 = hn

2, h′n
3 = hn

3 + 3(〈n|V |n〉 − 〈V 〉0)h
n
2.

Continuing as in the Mühlschlegel–Girardeau proof, let us define a probability law from
the weights

wn = 1

Z0
e−βEn

0 , Z0 =
∑

n

e−βEn
0 .

We shall now apply the Jensen inequality to two different convex functions. The first term in
(21) makes up the first Peierls bound (10); we apply the second Jensen inequality (12) to it.
The second term is the average of a convex function (13) of two variables h′n

2 = hn
2 � 0 and

h′n
3 , and we apply the fundamental Jensen inequality (1) to it. The result is

Z � Z0 e−β〈V 〉0

[
1 +

β2u2

2
exp

(
−β

3

u3

u2

)
+

β2(v2 − u2)

2
exp

(
−β

3

v3 − u3

v2 − u2

)]
,

F � F0 + 〈V 〉0 − T ln

[
1 +

u2

2T 2
exp

(
− 1

3T

u3

u2

)
+

v2 − u2

2T 2
exp

(
− 1

3T

v3 − u3

v2 − u2

)]
,

(22)

where

uk ≡
∑

n

wn(〈n|V |n〉 − 〈V 〉0)
k = 1

Z0

∑
n

e−βEn
0 (〈n|V |n〉 − 〈V 〉0)

k,

vk ≡
∑

n

wn〈n|(H − 〈n|H |n〉 + 〈n|V |n〉 − 〈V 〉0)
k|n〉

= 1

Z0

∑
n

e−βEn
0 〈n|(H0 − En

0 + V − 〈V 〉0
)k|n〉.



9060 A Decoster

This ‘second quantum Bogoliubov inequality’ is always stronger than the first one (8) or
(9), even if the two may be very close at low temperature. To get it, one must calculate the
averages 〈· · ·〉0 of four operators:

uk = 〈(VD − 〈V 〉0)
k〉0, v2 = 〈(V − 〈V 〉0)

2〉0,

v3 = 〈(V − 〈V 〉0)
3 + V (H0V − V H0)〉0,

VD being the ‘diagonal part’ of V :

VD ≡
∑

n

|n〉〈n|V |n〉〈n|.

Note that v2 − u2 = 〈(V − VD)2〉0 � 0.
A simpler but weaker second quantum Bogoliubov inequality is obtained from (22) and

the convexity of the function (13):

Z � Z0 e−β〈V 〉0

[
1 +

β2v2

2
exp

(
−β

3

v3

v2

)]
,

F � F0 + 〈V 〉0 − T ln

[
1 +

v2

2T 2
exp

(
− 1

3T

v3

v2

)]
.

(23)

Expansion in powers of β of the expressions between square brackets in equations (22)
or (23) gives the same result as (19) up to third order. Above all, these inequalities are exact
bounds: if the Hamiltonian H0 of the reference system depends on a parameter, one can use
them as variational principles for the partition function Z or the free energy F.

Higher-order Bogoliubov inequalities are treated in appendix C.

8. Application: anharmonic oscillator

8.1. Quantum mechanics

Let us take as an example of application a quantum mechanical one-dimensional anharmonic
oscillator. The simplest case is that of a positive quartic term; the Hamiltonian is

H = p2

2m
+

m

2
ω2x2 + λ2x4.

This case is simple, but not without danger, since the perturbation series in powers of λ2 does
not converge [15]. The eigenvalues Ei have been calculated with good precision [16], so that
the statistical sum

e−βF ≡ Z ≡ Tr e−βH =
∑

i

e−βEi

can be computed numerically. It will be the reference; in an actual problem, it would be of
course the unknown. Numerical applications (table 1) will be done for h̄λ2/(m2ω3) = 1000,
that is to say in a very anharmonic case: the ground state energy is 6.69h̄ω (against 1

2h̄ω if
λ = 0).

In a potential problem such as this one, the classical limit is easily calculated ([2],
equation (31.5)):

Zcl = 1

2πh̄

∫∫
dp dx e−βH =

√
mT

2πh̄2

∫ ∞

−∞
dx exp

[
−β

(m

2
ω2x2 + λ2x4

)]
. (24)

Contrary to all other approximations presented here, it is an upper bound of Z ([2],
equation (33.15); [17]). We have added it to table 1; it is of course valid at high temperature
only.
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Table 1. Quantum anharmonic oscillator free energy as a function of temperature, with
normalizations as indicated, for h̄λ2/m2ω3 = 1000. Classical limit; exact value; Pirls and
Bog, -I and -II: first two Peierls and Bogoliubov approximations; Bog-2: weak second Bogoliubov
approximation; Bog-II−: second Bogoliubov approximation with the optimum frequency ω0 from
the first one. Columns are ordered according to the numerical values at high temperature. This
order is not valid everywhere (see T = 10h̄ω), but there are rigorous chains of inequalities such as
Cl � Ex � P-II � B-II � B-II− � B − I and Cl � Ex � P-II � P-I � B-I.

F/T

T/h̄ω Classical Exact Pirls-II Bog-II Bog-2 Pirls-I Bog-II− Bog-I

0.1 3.795 66.94 68.28 68.28 68.28 68.28 68.28 68.28
1 2.056 6.694 6.828 6.828 6.828 6.828 6.828 6.828
3 1.230 2.228 2.274 2.274 2.274 2.274 2.274 2.274

10 0.326 0.490 0.513 0.517 0.522 0.516 0.517 0.523
30 −0.500 −0.467 −0.457 −0.450 −0.448 −0.441 −0.438 −0.424

100 −1.403 −1.397 −1.394 −1.389 −1.389 −1.372 −1.367 −1.351
300 −2.227 −2.225 −2.224 −2.220 −2.220 −2.200 −2.195 −2.179

1000 −3.130 −3.129 −3.128 −3.125 −3.124 −3.104 −3.099 −3.082
3000 −3.954 −3.954 −3.953 −3.949 −3.948 −3.929 −3.923 −3.906

10000 −4.857 −4.857 −4.856 −4.852 −4.852 −4.832 −4.826 −4.810

The reference system will be the harmonic oscillator

H0 = p2

2m
+

m

2
ω2

0x
2,

for which all quantities are easily calculated:

En
0 = h̄ω0

(
n +

1

2

)
, Z0 = 1

2 sinh
(

h̄ω0
2T

) , F0 = T ln

[
2 sinh

(
h̄ω0

2T

)]
.

The parameter ω0 will be varied to get the best results.
The difference V ≡ H − H0 is

V (x) = m

2

(
ω2 − ω2

0

)
x2 + λ2x4. (25)

It is not mandatorily a perturbation, with the meaning of small quantity. Well-known algebraic
or analytic methods yield the necessary matrix elements and averages. We shall use the
notation

A ≡ ω2 − ω2
0

ω2
0

, B ≡ h̄λ2

m2ω3
0

, C ≡ coth

(
h̄ω0

2T

)
,

to present the results.

8.2. Peierls, Bogoliubov

Taking the H0 eigenstates as basis {|n〉}, let us calculate first

〈n|V |n〉 = h̄ω0

4
[A(2n + 1) + 3B(2n2 + 2n + 1)]. (26)

The (first) Peierls inequality (7) is

Z �
∑

n

e−β〈n|H |n〉 =
∑

n

exp

{
−β

h̄ω0

4
[(A + 2)(2n + 1) + 3B(2n2 + 2n + 1)]

}
.

It is a fairly good approximation in all cases (table 1), but it requires a summation; this one is
certainly feasible here, but the term-by-term calculation of the matrix elements 〈n|V |n〉 could
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be difficult in an actual problem. The ground state energy (i.e. the value of F at T = 0) is found
equal to 6.83h̄ω. Let us say at once that it will not improve with the following approximations.
Expansions (17) and (19) contain in principle the quantum perturbation series which gives the
energy levels, including the denominators 1

/(
H0 − En

0

)
; but the high-order bounds do not, at

least at low temperature in the present case.
The (first) Bogoliubov inequality (9) gives

F � F0 + 〈V 〉0 = T ln

[
2 sinh

(
h̄ω0

2T

)]
+

h̄ω0

4
C(A + 3BC).

As proved by Feynman ([13], section 2.6), variation of the harmonic oscillator frequency ω0

gives a minimum for 〈x dV/dx〉0 = 0 in general, that is here for A + 6BC = 0. Feynman is
certainly right, but the minimum property can be checked by differentiating with respect to
ω0: the optimum is obtained for the solution ω0(T ) of the equation

ω2
0 − 6h̄λ2

m2ω0
coth

(
h̄ω0

2T

)
= ω2, (27)

which is easy to solve numerically. The variational Bogoliubov approximation is found equal
to Peierls’ at low temperature, and about half as good at high temperature (table 1). A great
quality of these two variational approximations is to give results that are acceptable for all
temperatures.

The summation needed for the Peierls approximation may be long to perform. Instead of
determining the optimum value of the variational parameter ω0, one can try to use what is the
optimum for the first Bogoliubov approximation, solution of equation (27) or A + 6BC = 0.
The results (not shown in table 1) are very good: the added error is at most one unity in the
last digit shown, and this at high temperature only. Note that at T = 104h̄ω, the optimum
is ω0 = 101ω for the Peierls approximation, not far from the ω0 = 105ω optimum for the
Bogoliubov one.

8.3. Peierls II

With the basis {|n〉} of H0 eigenstates, the second Peierls inequality (18) is

Z �
∑

n

e−β〈n|H |n〉
[

1 +
β2hn

2

2
exp

(
−β

3

hn
3

hn
2

)]
,

with

hn
2 = 〈n|(V − 〈n|V |n〉)2|n〉,

hn
3 = 〈n|(V − 〈n|V |n〉)3 + V (H0V − V H0)|n〉.

An easy, if somewhat long, calculation yields

hn
2 = (h̄ω0)

2

128
[4A2(N2 + 3) + 16ABN(N2 + 11) + B2(17N4 + 454N2 + 297)],

hn
3 = (h̄ω0)

3

512
[64A3N + 3A2B(N4 + 278N2 + 297) + 12AB2N(N4 + 278N2 + 1257)

+ 12B3(N6 + 346N4 + 3937N2 + 2052)]

+
(h̄ω0)

3

4
[A2N + 6AB(N2 + 1) + 10B2N(N2 + 5)],

where N ≡ 2n + 1.
The second Peierls approximation requires a summation which is somewhat more

complicated than for the first one. But numerical results (table 1) become remarkable at
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high temperature. There is less improvement at intermediate temperatures and none at low
temperature.

8.4. Bogoliubov 2

The weak second Bogoliubov inequality is (23)

Z � Z0 e−β〈V 〉0

[
1 +

β2v2

2
exp

(
−β

3

v3

v2

)]
,

with the averages 〈· · ·〉0 of two operators:

v2 = 〈(V − 〈V 〉0)
2〉0, v3 = 〈(V − 〈V 〉0)

3 + V (H0V − V H0)〉0.

One gets without much difficulty

v2 = (h̄ω0)
2 C2

8
(A2 + 12ABC + 48B2C2),

v3 = (h̄ω0)
3 C3

8
(A3 + 27A2BC + 288AB2C2 + 1188B3C3)

+ (h̄ω0)
3 C

4
(A2 + 12ABC + 60B2C2).

At high temperature, the weak second Bogoliubov bound is found very close to the second
Peierls one, and is therefore very good (table 1). It is, however, deceptively close to the first
Bogoliubov bound at intermediate and low temperatures.

8.5. Bogoliubov II

The second Bogoliubov inequality is (22)

Z � Z0 e−β〈V 〉0

[
1 +

β2u2

2
exp

(
−β

3

u3

u2

)
+

β2(v2 − u2)

2
exp

(
−β

3

v3 − u3

v2 − u2

)]
,

with the averages 〈· · ·〉0 of two additional operators:

uk = 〈(VD − 〈V 〉0)
k〉0.

VD , ‘diagonal part’ of V , can be a problem in an actual case. Here, the matrix element (26)
gives

VD = A

2
H0 +

3B

8

(
4

H 2
0

h̄ω0
+ h̄ω0

)
.

One gets without much difficulty

u2 = (h̄ω0)
2 C2 − 1

16
[A2 + 12ABC + 9B2(5C2 − 1)],

u3 = (h̄ω0)
3 C2 − 1

32
[A3C + 9A2B(3C2 − 1)

+ 54AB2C(5C2 − 3) + 27B3(37C4 − 32C2 + 3)].

Compared to the weaker one (table 1), the second Bogoliubov approximation is much improved
at intermediate temperature, so that it is very close to the second Peierls one in all cases.

To avoid the iterations needed to determine the optimum value of the variational parameter
ω0, one can try to use what is the optimum for the first Bogoliubov approximation, solution
of equation (27) or A + 6BC = 0. The loss of precision is large: the result is closer to the
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Table 2. Classical anharmonic oscillator free energy as a function of temperature, with
normalizations as indicated, for h̄λ2/m2ω3 = 1000. Exact classical result; G-Bog-I and -II: first
two Gibbs–Bogoliubov approximations; G-Bog-II−: second Gibbs–Bogoliubov approximation
with the optimum frequency ω0 from the first one. Columns are given in the (rigorous) order of
numerical values.

F/T

T/h̄ω Classical G-Bog-II G-Bog-II− G-Bog-I

0.1 3.795 3.799 3.828 3.839
1 2.056 2.061 2.092 2.103
3 1.230 1.235 1.266 1.277

10 0.326 0.331 0.361 0.373
30 −0.500 −0.494 −0.463 −0.452

100 −1.403 −1.397 −1.366 −1.355
300 −2.227 −2.221 −2.191 −2.179

1000 −3.130 −3.124 −3.094 −3.083
3000 −3.954 −3.949 −3.918 −3.907

10000 −4.857 −4.852 −4.821 −4.810

first than to the second approximation (table 1). Note that at T = 104h̄ω, the optimum is
ω0 = 105ω for the first Bogoliubov approximation and ω0 = 126ω for the second, which is
fairly different.

However, calculating the second Peierls approximation with the optimum ω0 of the second
Bogoliubov approximation is a good idea: the added error is at most one unit in the last digit
shown, and this at high temperature only. Note that the optimum is ω0 = 116ω at T = 104h̄ω

for the second Peierls approximation, not too far from the ω0 = 126ω optimum for the second
Bogoliubov one.

8.6. Statistical mechanics

To illustrate the Gibbs–Bogoliubov variational bounds, we treat the same one-dimensional
anharmonic oscillator, in statistical mechanics. After the quantum-mechanical calculations,
the classical ones will be a simple matter. The statistical partition function, already given in
(24), is now the target. Numerical values, already presented in table 1, are given again in table 2.
No use has been made of the scaling which holds at the classical limit (F/T + ln(T /h̄ω) is a
function of λ2T/m2ω4 only).

The reference is the harmonic oscillator, for which Z0 = T/h̄ω0. Averages on the
harmonic oscillator thermal distribution are calculated by

〈X〉0 = 1

Z0

√
mT

2πh̄2

∫ ∞

−∞
dxX(x) exp

(
− m

2T
ω2

0x
2
)

.

The moments of V (x) (equation (25)) are easily found to be

〈V 〉0 = T

2
(A + 3D),

and

M2 ≡ 〈(V − 〈V 〉0)
2〉0 = T 2

2
(A2 + 12AD + 48D2),

M3 ≡ 〈(V − 〈V 〉0)
3〉0 = T 3(A3 + 27A2D + 288AD2 + 1188D3),
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using the notation

A ≡ ω2 − ω2
0

ω2
0

, D ≡ 2
λ2T

m2ω4
0

.

The (first) Gibbs–Bogoliubov inequality is (5)

Fcl � F0 + 〈V 〉0 = T ln

(
h̄ω0

T

)
+

T

2
(A + 3D).

Variation of the harmonic oscillator frequency ω0 gives a minimum for 〈x dV/dx〉0 = 0, or
A + 6D = 0, or

ω2
0 = ω2

2

(
1 +

√
1 + 48

λ2T

m2ω4

)
.

The results (table 2) are fairly good, with an almost constant error on F/T .
The second Gibbs–Bogoliubov inequality is (16):

Fcl � F0 + 〈V 〉0 − T ln

[
1 +

M2

2T 2
exp

(
− 1

3T

M3

M2

)]
.

The variational results (table 2) improve the previous ones in all cases, and the error on F/T

is again almost constant.
Using the second Gibbs–Bogoliubov approximation with the optimum frequency ω0 from

the first one is not a good idea (table 2).

9. Conclusion

The Gibbs–Bogoliubov inequality in classical statistical mechanics, and the Peierls’ and
Bogoliubov’s in quantum mechanics, can be used in variational calculations of the free energy
of a system from the properties of another system. We lacked, however, a mean to improve the
approximations by going to a higher order. We have presented here sequences of inequalities
which generalize the former ones, and can be used as variational principles. The results are
equivalent to the thermodynamical perturbation expansion when it is valid (at high temperature
or for a small perturbation), while ensuring exact bounds in all cases.

The most practical results are of course the simplest. The second Gibbs–Bogoliubov
inequality in statistical mechanics is (16). In quantum mechanics, the second Peierls inequality
is (18); the second Bogoliubov inequality is (22) and a weaker one is (23). These are expected
to be the most useful results of this paper.

As an example of application, the free energy of a quantum anharmonic oscillator has been
calculated with the first two variational principles, to show in detail what amount of calculation
is needed. The results are remarkably good at high temperature. We note, however, that there
is no improvement of the ground state energy beyond the first order: the new variational
principles dodge the problems of the standard quantum perturbation theory (which does not
converge here), and act only at finite temperature. The same problem, treated in classical
mechanics, shows a steady improvement at all temperatures.

The new variational principles can be applied everywhere the first ones have been,
provided the necessary moments and averages can be calculated. We plan to apply them
now to the atomic physics of multi-charged ions.
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Appendix A. Third Jensen inequality

For N = 3 and arbitrary α,

〈ex−〈x〉〉 � 1 + e−α

(
m2

2
+

m3 + 3αm2

6
+

m4 + 4αm3 + 6α2m2

24

+
m5 + 5αm4 + 10α2m3 + 10α3m2

120

)
.

Let us put down α = −(m3/3m2) + λ; whatever λ,

〈ex−〈x〉〉 � 1 +
m2

2
exp

(
m3

3m2
− λ

)(
1 + λ +

λ2

2
+

λ3

6
+

1 + λ

6
p +

q

6

)
,

where

p ≡ 3m4m2 − 2m2
3

6m2
2

, q ≡ 27m5m
2
2 − 45m4m3m2 + 20m3

3

270m3
2

.

The parameter p is positive, since

p = 1

2m2

〈[
(x − 〈x〉)2 − m3

m2
(x − 〈x〉) − m2

]2
〉

+
m2

3

6m2
2

+
m2

2
� 0.

The best bound is obtained for λ = λ0, where λ0 is the (unique) real root of λ3 + pλ + q = 0,
that is to say (never miss an opportunity of quoting Cardan’s formula)

λ0 =
(

−q

2
−

√
q2

4
+

p3

27

)1/3

+

(
−q

2
+

√
q2

4
+

p3

27

)1/3

.

The third lower bound is then

〈ex−〈x〉〉 � 1 +
m2

2
exp

(
m3

3m2
− λ0

) (
1 + λ0 +

λ2
0

2
+

p

6

)
. (A.1)

For a very asymmetrical distribution of x, the situation differs according to the sign of
λ0, which is the opposite of the sign of q. The parameter q is a measure of a certain ‘super-
asymmetry’ beyond the asymmetry measured by m3. A relation that might help to understand
this quantity is

q = 1

10m2

〈
(x − 〈x〉)

[
(x − 〈x〉)2 − 5m3

6m2
(x − 〈x〉) +

5m2
3

36m2
2

]2
〉

.

If q 
 p3/2, then −λ0 � q1/3 
 p � |m3/3m2|, and the third bound is much stronger
than the second one. If q = 0, then λ0 = 0, and the third bound (A.1) remains better than
the second one (12). If q � −p3/2, then λ0 � −q1/3 
 p � |m3/3m2|, and we have the
surprising result that the third bound is less good than the second, and near the first one; but,
except for extreme cases, the three of them are then very close.

To avoid Cardan’s formula, one can be content with the third Jensen inequality with λ = 0:

〈ex−〈x〉〉 � 1 +
m2

2
exp

(
m3

3m2

)(
1 +

p + q

6

)
.

This third non-optimum bound is better than the second one if q > −p.



Variational principles and thermodynamical perturbations 9067

Appendix B. Higher-order Jensen inequalities

Let us rewrite the general case (section 5) with more precise notation. The Nth Jensen
inequality is

〈ex−〈x〉〉 � 1 + FN( �m), mk ≡ 〈(x − 〈x〉)k〉, (B.1)

where the function FN is defined by

FN( �m) ≡ e−α

2N−1∑
k=2

mk

k!

2N−1−k∑
i=0

αi

i!
, (B.2)

α( �m) being the solution of
2N−1∑
k=2

mk

k!

α2N−1−k

(2N − 1 − k)!
= 0. (B.3)

If the mk are the moments of a random variable, this equation has only one real root α,
since the derivative of the left-hand side with respect to α,

fN(α, �m) ≡
2N−2∑
k=2

mk

k!

α2N−2−k

(2N − 2 − k)!
= 〈(x − 〈x〉 + α)2N−2〉 − α2N−2

(2N − 2)!
(B.4)

is positive, by application of the Jensen inequality (1) to the convex function x2N−2 (we have
given a name to this function fN for future reference). The left-hand side of (B.3) is an
increasing function of α with value m2N−1/(2N − 1)! at α = 0; we therefore note that the
sign of the solution α( �m) is the opposite of the sign of m2N−1.

For a symmetrical distribution of x, all odd-order moments vanish. The sequence of
Jensen inequalities reduces then to

〈ex−〈x〉〉 � · · · � 1 +
m2

2!
+

m4

4!
� 1 +

m2

2!
� 1,

which is obvious: all even-order moments are positive.
A number of properties are useful for future use. To begin with, λ being an arbitrary

constant, FN(λ �m) = λFN( �m) and α(λ �m) = α( �m).
Let us show that FN(�x) is a convex function of the variables xi if the corresponding

function fN(α, �x) is positive. Definition (B.2) indicates that it is a linear function of the xk ,
except in the direction where α(�x) varies; there remains to be shown that FN is convex in this
direction. One calculates in succession

∂α

∂xk

= −1

fN(α, �x)

α2N−1−k

(2N − 1 − k)!k!
,

where fN is the positive function (B.2), and

∂FN

∂xj

= e−α

j !

2N−1−j∑
i=0

αi

i!
,

∂2FN

∂α∂xj

= −e−α α2N−1−j

(2N − 1 − j)j !
.

The matrix of second derivatives is found to be positive if the function fN is positive,∑
jk

Xj

∂2FN

∂xj∂xk

Xk = e−αfN(α, �x)

(
�X · ∂α

∂ �x
)2

,

which proves the point. We shall also use the convexity of FN in the simple form

FN(�x1) + FN(�x2) � 2FN

( �x1 + �x2

2

)
= FN(�x1 + �x2). (B.5)
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Another useful property is

FN( �m) = e−tFN( �m′), (B.6)

with the off-centre moments

m′
k ≡ 〈(x − 〈x〉 + t)k〉 − t k,

t being an arbitrary constant. Equation (B.3) has a single root α( �m′) = α( �m) − t , so that the
right-hand side of (B.6) actually does not depend on t.

Let β be a positive constant. A variant of inequality (B.1) is

〈e−β(x−〈x〉)〉 � 1 + FN( �m′′), m′′
k = (−β)kmk.

Expanding the exponential gives the perturbation series

〈e−β(x−〈x〉)〉 = 1 +
β2m2

2!
− β3m3

3!
+

β4m4

4!
+ · · ·

It is easily seen from (B.3) that α( �m′′) = −βα( �m), so that inspecting equation (B.2) shows
that the expansion of 1 + FN( �m′′) in powers of β coincides with the former up to the β2N−1

term. For small β, the exact bound 1 + FN( �m′′) is thus equivalent to a limited expansion. The
situation is very different for large β. If the moment m2N−1 is strictly positive, the expansion
limited to order 2N − 1 becomes negative and goes to −∞, which is absurd; but the root
α( �m′′) is strictly positive, 1 +FN( �m′′) is finite whatever β � 0, and goes to 1 at infinity; 1 +FN

is called a regularization of the expansion limited to order 2N − 1: as precise for small β,
and bounded when β is large. If in contrast the moment m2N−1 is negative or zero, α( �m′′) is
negative or zero, and 1 + FN tends to +∞ together with β; since it is an exact lower bound,
one can be sure that 〈exp[−β(x − 〈x〉)]〉 also goes to infinity.

Appendix C. Higher-order quantum inequalities

C.1. ter Haar, Peierls

Using the Nth Jensen inequality (B.1) instead of the first (2), the proof which gave (6) now
yields a ‘Nth ter Haar inequality’

〈ψ | eA|ψ〉 � e〈ψ |A|ψ〉[1 + FN(�µ)], µk ≡ 〈ψ |(A − 〈ψ |A|ψ〉)k|ψ〉,
where the function FN has been defined in (B.2), (B.3), and then the ‘Nth Peierls inequality’

Z �
∑

i

e−β〈i|H |i〉[1 + FN(�h′′i )], h′′i
k ≡ (−β)k〈i|(H − 〈i|H |i〉)k|i〉. (C.1)

Expanding 1 + FN in powers of β gives the same result as (17) up to order 2N − 1. Note that
all these Peierls inequalities are equalities if {|i〉} are the eigenstates of H.

C.2. Quantum Bogoliubov

On the basis of eigenstates of H0, and using the property (B.6) with t = 〈n|V |n〉 − 〈V 〉0, the
Nth Peierls inequality (C.1) becomes

Z � e−β〈V 〉0
∑

n

e−βEn
0 [e−β(〈n|V |n〉−〈V 〉0) + FN(�h′′n)],

h′′n
k = (−β)k[〈n|(H − 〈n|H |n〉 + 〈n|V |n〉 − 〈V 〉0)

k|n〉 − (〈n|V |n〉 − 〈V 〉0)
k].

(C.2)
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The function fN corresponding to this FN(�h′′n), that is

fN(α, �h′′n) = β2N−2

(2N − 2)!
[〈n|(H − 〈n|H |n〉 + 〈n|V |n〉 − 〈V 〉0 + α)2N−2|n〉

− (〈n|V |n〉 − 〈V 〉0 + α)2N−2],

is positive, by application of the ter Haar inequality (6) to the convex function x2N−2. As seen
in appendix B, the positivity of fN ensures that FN is a convex function.

Continuing as in the Mühlschlegel–Girardeau proof, we shall now apply the Jensen
inequality to two different convex functions. The first term in (C.2) makes up the first Peierls
bound (10); we apply the Mth Jensen inequality (B.1) to it. The second term is the average of
a convex function FN , and we apply the fundamental Jensen inequality (1) to it. The result is

Z � Z0 e−β〈V 〉0 [1 + FM(�u′′) + FN(�v′′ − �u′′)], (C.3)

where

u′′
k ≡ (−β)k

Z0

∑
n

e−βEn
0 (〈n|V |n〉 − 〈V 〉0)

k,

v′′
k ≡ (−β)k

Z0

∑
n

e−βEn
0 〈n|(H0 − En

0 + V − 〈V 〉0
)k|n〉.

We thus have a double sequence of inequalities (C.3) which generalize the quantum
Bogoliubov inequality (8). The M = N cases are naturally preferred. In particular, the
second quantum Bogoliubov inequality (M = N = 2) is (22). A simpler but weaker Nth
quantum Bogoliubov inequality is obtained from (C.3) with M = N , and the convexity
inequality (B.5):

Z � Z0 e−β〈V 〉0 [1 + FN(�v′′)], F � F0 + 〈V 〉0 − T ln[1 + FN(�v′′)]. (C.4)

The expansion in powers of β of the expressions inside square brackets in equations (C.3)
or (C.4) coincides with the quantum thermodynamical perturbation expansion (19) up to order
min(2M − 1, 2N − 1). All these inequalities are exact bounds and can be used as variational
principles for the partition function Z or the free energy F.
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